
Michael Chase

East Bay, CA ~ Email ~ LinkedIn ~ GitHub | v09.17
pdf | bio | resume

About

Favorite Quote: "A man who knows something knows that he knows nothing at all" ‑ Erykah Badu

Favorite Language: Python

Favorite Editor: vim

Favorite Tasks: Hitting the High Notes for backend apis and infastructure

Values: Challenges, Experimentation, Deep Learning, Trendsetting, Career Building, Culture

Skills: python2.7/3.6, flask, sanic, NodeJs, Restify, Express, React‑Native, Javascript, React, Angular 1.x/2, MySQl,

MongoDB, Redis, Docker, EC2, ECS, Terraform, Jenkins, Architecture, Problem Solving

Education: B.S. Computer Science | Norfolk State University, Norfolk, VA | 2008 ‑ 2012 | GPA 3.77/4.0

Experiences

Collecting and notifying on gdax.com trade statistics Around December, 2016 I got into cryptocurrency trading. By

early February 2017 I had a functional, single exchange, arbitrage bot written in python2.7 using gevent for

threading. This bot was very basic and not very profitable. This project was the first time I used the Decimal Python

library. I ended up making the bot a service that could run against multiple accounts via a flask API. More research

and tinkering led me to abandon the arbitrage method. By the end of May, I had refactored this project to python3.6

using sanic and asyncio . In its current but evolving state, you can signup/in and view some poorly displayed data on

various pairs. Data is stored in mysql and I am utilizing alembic to maintain schema migrations. In the future, it will

allow you to setup custom notifications.

Hobby Closed Source Jan 2017 ‑ present

Redis, HIPAA, and AWS My teammates and I currently maintain a stack which consists of nodejs , restify , mysql ,

and memcached . This stack powers a localized, custom built survey application. With our migration to AWS and

commitment to privacy, our data was instructed to follow HIPAA requirements. At its core, this meant encryption at

rest and in transit. I researched some solutions and led our team to initially implement stunnel and a custom

deployed redis instance on ec2 (orchestrated through terraform). After some trials, tribulations, and a couple

group discussions, we ended up utilizing ElastiCache and handling (en/de)cryption at the app tier with a kms data

key. In addition, we created a python2.7 tool to help manage secrets. It uses iam roles , ssm parameter store , and

 kms to securely store and retrieve sensitive app runtime data.

Senior Software Engineer Ancestry Jan 2017 ‑ present

mailto:mrmchase08+github@gmail.com
https://www.linkedin.com/in/mikechase01/
https://github.com/reallistic
https://github.com/reallistic/README.md/blob/bio/experiences.pdf
https://github.com/reallistic/README.md/blob/bio/README.md
https://github.com/reallistic/README.md/blob/bio/resume.md
https://www.youtube.com/watch?v=-CPCs7vVz6s
https://xkcd.com/353/
https://vim-adventures.com/
https://www.joelonsoftware.com/2005/07/25/hitting-the-high-notes/
https://cryptostat.herokuapp.com/products
http://www.zdnet.com/article/genealogy-company-ancestry-migrates-entire-infrastructure-to-aws/

Handling orders at scale On a previous team, we maintained a full‑stack e‑commerce site that took a variety of

orders in a variety of languages. This site was initially architected with angular1.x , python2.7 , tornado , sockjs ,

 celery , and rabbitmq . This site only handled couriering data inputs to a backend ordering system. In addition to

helping build and push a few client side features, I proposed we refactor and re‑architect the application to no longer

use websockets and queues. In addition, I wrestled pika to work with tornado in order to get rid of a mix of

threading, polling, and in‑memory cache which was used to connect sockjs to celery . Afterwards I was able to

design and implement a system that used classes to define and register rpc action handlers as the first phase in

swapping long‑polled websockets for http .

Software Engineer Ancestry Aug 2015 ‑ Jan 2017

Giving people control over their data A few friends and I got together with a plan to help simplify basic and

overlooked data communication. The outcome of this project was a private beta app called Query. I led the

architectural design of the iOS app which was developed using React‐Native while also developing the backend via

 python2.7 , flask , mongodb , and redis . We knew we'd want to one day launch the app on multiple platforms, so I split

out the core data‑to‑server logic of the app into a separate project. The design consisted of stores which were

 fbemitter 's, Object‑Oriented to re‑use common logic, and multiple dispatcher 's to separate state updates in the

various stores . This allowed for the app logic to react to state changes in sibling stores which was very helpful when

dealing with object updates over websocket . In order to keep Promises at bay and handle flows such as OAuth, I

created and open‑sourced a library called StaceFlow. In order for people to have control, the api had to handle

permissions. Initially, these permissions were simple " Share " objects which gave usera access to itemb which is

owned by userc . Later, we realized user groups and item groups would be a thing as well as permission types. So I

went back to the drawing board and created a permission system backed by mongodb . This system is able to

understand a complex permissions structure where a group of people can have permissions over a group of items,

which was provided by a single user. If, for example, that user's permissions are revoked, so are the groups. Query

later transformed into Sequel which still uses the original react‐native and python backends.

Consultant Useful Labs Inc. Jan 2017 ‑ Present

Co‑Founder/Lead Engineer Useful Labs Inc. Aug 2015 ‑ Jan 2017

Notifications at web scale On the first day of my first job at a startup, the CEO (my direct manager) announced I

would be working with one other engineer to finish rewriting the core api. (Prior to that I had never touched a

production api in life). At the time, the api was written in python2.7 , used parse for data storage and push

notifications, and did all of its requests (including sending notifications) on the request thread. The senior engineer

had been re‑writing the api in python2.7 , gevent and mongodb . This gave us some good initial benefits and allowed us

to get notification sending off of the request thread. However, together we took this a step further by implementing

 redis‐queue to create a horizontally scalable distributed message queuing system. While there, I was able to find and

fix a bug in mongoengine which would, in some circumstances, cause O(n^2^) comparisons.

Software Engineer Yo Dec 2014 ‑ Aug 2015

https://www.npmjs.com/package/StaceFlow
https://www.sequel.me/
http://parseplatform.org/
http://python-rq.org/
https://github.com/MongoEngine/mongoengine/pull/947
https://www.justyo.co/

